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THEORY*
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I. INTRODUCTION

THE fundamental problem of laminar flame theory consists of determining
the structure and properties, specially the propagation velocity, of a com-

bustion wave which advances through a homogeneous combustible mixture

at rest, of given thermodynamic state and chemical composition.

In recent years important progress has been accomplished in the study of

this problem, including its formulation, mathematical methods of solution,

application to specific cases and development of experimental techniques.

Though a significant effort has also been devoted to the study of other

problems of the theory, such as those of quenching, internal stability of

the wave, ignition and flammability limits, the progress realized in them

has been, in general, considerably smaller.
In particular, with respect to the existence of the inflammability limits,

whose origin is yet unknown, in 1957 D. B. Spalding") proposed as their

cause the heat losses which can occur in the flame either by convection

or by radiation effects. The most important result of his work consisted in

showing that such heat losses can produce two different propagation velocities

for the flame which approach each other when the heat loss increases and

finally coincide for a limit value of it, above which the combustion does

not propagate through the mixture. According to Spalding, the point of

coincidence of them would determine the burning velocity corresponding

to the limit of inflammability of the mixture while the lower of both A, e-

locities cannot usually be observed because it is unstable. Similar results

have been also obtained by von Kármán and Penner(2), for a simplified

model in which the influence of diffusion is neglected and the rate of

chemical reaction is constant ; while Zeldovich and Barenblatt"), starting

from an unsteady state and by numerical integration of the flame equations,

have also obtained a limit velocity determined by the heat loss, even when

in their solutions the double velocity of Spalding does not appear. Finally,
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Hirschfelder") has show n lately that when the heat losses are localized in a
porous stabilizer located at the cold limit of the flame, two propagation
velocities are also obtained for each value of the heat transfered to the
stabilizer and he has tried to relate this result with those of Spalding who,
on his side, has published experimental measurements") w hich seem to
confirm the real existence of both velocities.

The present work constitutes a theoretical analysis ot the problem,
with the object of clearing, by means of a systematic formulation and
discussion of the different cases considered, until what point the existence
of both velocities depends on the choice of the boundary conditions or
the use of the adequate parameters. The study is performed on a simpli-
fied flame model, easily integrable in exact form, with two unique chem-
ical species, reactants and products. The effect of the diffusion as well
as the influence of the concentration in the reaction rate is taken into
account, but not, at least in a systematic way, that of the activation enemy.
How ever, qualitative conclusions can be deduced about the influence
of the same, on the basis that its value does not alter the multiplicity nor
the properties of the solutions.

The cases considered in this study and the results obtained are the fol-
low inQ:

Flame with heat loss localized at the stabilizer. It is shown that the
tw o velocities of Hirschfelder reduce to only one, by means of the choice
of the adequate parameter, pointing out the apparent contradiction be-
tween Spalding's experimental results and the theoretical conclusions.

Flame with distributed heat losses. It is shown that the two velocities
of Spalding reduce to only one by varying slightly the boundary condi-
tions at the hot limit, both when an ignition temperature at the cold boun-
dary is assumed as well as when the porous stabilizer of Hirschfelder is
used. This result is particularly significant when the activation energy is
different from zero, because then such modification is made imperceptible
and the lower of both velocities is very small.

Finally, as a new cause of disturbance, for the same flame model,
the effect of a dilution of the mixture produced by the lateral diffusion of
the active species is considered, obtaining the result that the dilution
diminishes the flame velocity, which vanishes for a limit value of the lateral
diffusion coefficient.

2. ADIABATIC FLAME

With the conventional assumptions") and the notation which is speci-
fied in the Annex and assuming a first order chemical reaction rate n of
the Arrhenius type:

n 0210(1 __y)
( I)
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the system of differential equations for an adiabatic flame, written in

 dimensionless form and referred to a coordinate system which propa-

gates with the flame is the following:

Energy equation:

de
— 0-1 ( 0,) (1—e) (2)

d4--

Diffusion equation:
d Y

	 = L(Y—E) (3)

Reaction equation:
I - (7

de 1
- — - e o 0 n (4)
d.;-- 7

In this last equation,

1
2

(5)
We-  °I

is an unknown parameter which measures the velocity of propagation

of the flame in dimensionless form.

The problem consists in determining the eigenvalue of 9, which makes

compatible all the boundary conditions that must be satisfied by these

equations at its cold and hot limits, as well as the solution of the system

corresponding to this value.

As it is known"), for solving this problem it is neccessary to assume

the existence of an ignition temperature 0,, greater than that of the cold gas

0‘,.such that the rate of the chemical reaction be zero for values of 0 lower

than  0 i.  If the origin of distances is chosen at the point where 0 = 0,
and the wave propagates in the negative direction then the above system

of equations is only valid for the reaction zone of the flame > 0, while

for the heating zone < 0, equation (4) must to substituted by the fol-
lowing:

< 0, e (6)

so that in this region the variable  E  disappears and the only unknown

quantities are 0 and Y.
Moreover, the solutions corresponding to both regions must join without

discontinuity at the point = 0 where the chemical reaction starts.
With these hypothesis, the boundary conditions of the system are the

following:

For the reaction zone > :

= 0, 0 0i, E =
(7)

= co, 0 = 1 E = Y = 1

29
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For the heating zone
0 = 0,

0 = 0,, Y =
(8)

The condition of continuity of Y at the origin is:

e = 0, yi (9)

The continuity of  0  and E is automatically satisfied, due to the preceding

boundary conditions.
The solution of such system determines a unique eigenvalue of 9-) for

each value of  0,.
Figure 1 shows, in the continuous line, the variation of p with 0, for

a reaction with zero activation energy 0, = 0, in which case the complete

solution of the system can be obtained in explicit from. In this figure, the

1.6


1 4

=  1

'1 2

00 = 0

ce

6

4

2 Oo = B

1 00 9 1.

e.

Flo. 1. Adiabatic flame. Variation of the burning velocity with

O. for Oa= 0 and Oa= 8.

dotted line represents the solution corresponding to a typical value of

the activation energy  0„  = 8, obtained by an approximate semi-analytical

method. Here it can be seen that the activation energy does not alter the

number of the solutions and it only does determine, among the infinite

values of (p corresponding to the different values of  0,,  which is the ade-

quate one. This value results in being independent of the unknown value
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of O. Similarly, Fig. 2 shows the curves of variation of 0 and Y as func-

tions of E, corresponding to these solutions.
The existence of ignition temperature can be substituted, like Hirsch-

felder has done"), by that of a porous stabilizer located in the boundary
of the flame = 0, at the temperature 00 of the cold gas, which absorbs
a given amount  q  of heat which substitutes in this model the unknown

.s
ea =

.6 I00  = 0

9, = 0.2

=
.4

.3

.1

2 5 7

FIG. 2. Adiabatic flame. Variation of Y and 0 with  e  for 0, — 0

and 0„ = 8.

ignition temperature. The conclusions obtained in this case are similar to
the previous ones. In fact, when the heat transfered to the stabilizer is
very small with respect to the heat released by the flame and the activation
energy of the reaction has an appreciable value, the flame velocity takes
a definite value, which coincides with that obtained in the model of the
ignition temperatures and that, as in this, results in being independent of
the amount of heat transferred to the stabilizer.

On the contrary, when the heat transfered to the stabilizer is appreciable,
the velocity of propagation of the flame depends, naturally, on it. In this

29"
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case, Hirschfelder") has shown recently that two different propagation

velocities of the flame exist for each value of  g,  suggesting a close rela-

tion of this fact with the two velocities obtained by Spalding") and

by von Kai-man and Penner(2), when the heat losses are continuously
distributed along the flame. In the following paragraph this case is studied

and it is shown that the duplicity of solutions of Hirschfelder is due to
an inadequate choice of the parameter of reference. Moreover, in the

following paragraphs it is shown that this case and the one of heat losses

distributed along the flame are essentially different, so that one of them

cannot be justified by means of the other.

3. FLAME WITH HEAT LOSSES LOCALIZED AT THE COLD BOUNDARY

In this case, the equation (2) of the flame system must be replaced by
the following:

dO
0 I (I VII— (10)

the equations (3) and (4) remaining invariables.

In this equation the parameter 6 is a dimensionless measure of the heat

g  transferred to the stabilizer per unit area and per unit time, defined

by the following expression:

	

,5 IdO

	

0
tiiCp Ti a

= 


It is evident that, instead of  q,  the significant parameter for the process

is Ô. since it measures the fraction of the heat released by the combustion

hich is transferred to the stabilizer. 6 plays here the same role as 00 for
the previous model.

The boundary conditions corresponding to the model of Hirschfelder
are the following:

	

0, 0 00,  E = 0

0 = 1-6, E= 1 I

The solution of the differential system also determines here, as in the

case of 0,, a unique value of 9, for each value of 6. In particular, for zero

activation energy, in which case the exact solution of the differential sy-
to stem can also be obtained in explicit form, the value of q corresponding

each value of 6 is given by the following expression :

42
— 1 ,

(12LL 1— 6-0„
(13)

(12)
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Similarly to what was done in the case of the adiabatic flame, in

Figs. 3 and 4 the value ofq as a function of (5 and those of 0 and Y as functions

of e respectively, are represented. Also here it can be shown that the pre-

sence of an activation energy different from zero does not alter the number

of solutions and it only determines, as has been said before, the alue

of (-f corresponding to the adiabatic model - 1.

1 6


1.2

8


. 6

I.

.2

= 8

0 1 2 3 C 5 .6 7 .8
a

FIG. 3. Flame with localized heat loss. Variation of the burning N'elocity

with (5 for  0,  0 and  0,  8.

If we want now to obtain the two velocities of Hirschfelder from the

preceding results it will suffice to represent q not as function of /), but

as function of q, or of any dimensionless measure of it that does not

depend on the propagation velocity of the flame. Such dimensionless meas-

ure independent of 7, is the parameter y defined by the expression

Ti a i 2 Cp IV
( 14)
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It is easily realized that between y, (5and 77 the following relation exists :

67) (15)

Which allows us to express the results as functions of y, from the previous
solutions. Such results, for OOE= 0, arc given in Fig. 5, where it can be
seen that the two values of the flame velocity corresponding to each value
of the heat y transferred to the stabilizer are a consequence of the two
values of (5 corresponding to each value of y.

Oa = 8

7

3

.2

.1

ea=o

4 _ ot. = 1

= 0 2

3 6

FIG. 4. Flame with localized heat loss. Variation of Y and 0 with  e

for 0, = 0 and 0„ = 8.

Lately, Spalding(5) has published the experimental results of the measure-
ments performed with a porous stabilizer which intended to realize
physically the model of Hirschfelder. Apparently, he obtained two dif-
ferent propagation velocities of the flame for each value of the heat fraction
transferred to the stabilizer. Essentially, his graphs, contrarily to those
of Hirschfelder, are equivalent to a representation of q vs. (), so that the
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two solutions obtained cannot be attributed to the action of the heat

transferred to the stabilizer, since, in such case the solution should be

unique, as it has been shown.

On the other hand, the two solutions which Hirschfelder obtains when

the flame velocity is represented as function of y have very little in com-

mon with the duplicity which results also in the case of the heat losses

distributed along the flame, so that its experimental verification does

not serve to justify the existence of two velocities in the case of distributed

losses which, as it is shown in the following paragraph, is really wry

doubtful, since it suffices a small modification of the boundary conditions

at the hot limit, imperceptible in the flames with appreciable activation

energy, for the two solutions to be reduced to a single one.

4. HEAT LOSSES DISTRIBUTED ALONG THE FLAME

Let T1  be the final temperature of the flame and suppose that the local

heat loss q,, per unit length and per unit time, due, for example, to the

lateral transfer of heat or to radiation, is eiven by the expression

	

= k(T—T1 ) ( 16)


where k is a coefficient which is constant.

In this casc, the energy equation of the flame system must be substi-

tuted by the following :

dO K
0-1+(l —0„)(1—r) ;- I (0-01)d.; (17)

(14' 7 -

while the equations (2) and (3) remain invariables.

In equation (17), K is a dimensionless coefficient of heat loss, which

is given by the expression

(18)
We  °2Cp

and ;;„ is the point where the loss starts. For example, if th.e final tempera-




ture coincides with that of the cold gases, the only case considered by


Spalding, and the loss takes place through all the flame, then is Of 0„.

cr-)•
As for the boundary conditions, those corresponding to the cold limit

are the same for the adiabatic flame, while those of the hot limit must be

substituted by the following :

= a), 0 ---- Of , Y E 1 (19)
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As it results from (17), between Q. and the total heat lost by the flame
there exists the following relation :

0= 1 Kof (0 —0f) d4-- (20)
97-

Similarly to what occurs in the previous cases, also in this, when the
activation energy is zero, exact solutions can be obtained in explicit form, w hich

I.


3


2

0 1. .8 1.2 1 6

FIG. 6. Flame with distributed heat loss. Variation of the double burning

velocity with  K,  for a final temperature equal to  O.

permits easy discussion of the results and extension of the conclusions
to the case in which the activation energy is different from zero, since
the value of Oa does not alter, as it has been seen, the number of the solutions
which result for 0„ — 0. Such solutions are obtained below for the two
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cases of greater importance in which the final temperature coincides.
respectively, with that of the cold gases 00,case of Spalding and von K Ar-
man, and with the ignition temperature 01.

(a) Of= 00.—Inthis case, the solution of the system of the flame equa-
tions shows that for each value of the coefficient of heat loss  K,  two
different values of the velocity fr exist, which are given by the equation




,
(L —1)11— L

0, --0„



4K
1]

(L-1)u— L

= -q2L [

/
4K
-

1—0,

1÷
4

9.2/.
-

e = 0.2
=  1

0

.7

K =_O2

.6

4

.3

K = 0.2

1
0123 .6.6.789

1

Flo. 7. Flame with distributed heat loss. Variation of  0  with  e  for

a final temperature equal to O.

Contrary to what happened when the heat losses were localized at
the stabilizer, the two velocities corresponding to each value of the coef-
ficient  K  cannot be reduced here to a sinde one by means of an adequate
definition of this parameter. On the contrary, for obtaining a single velocity

2
[

1:

K

being

.8
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it would be necessary to assume that the losses take place according
to a different law which would make the value of k dependent on that

of in, that is, on the flame velocity.

I.


3

2

1

0
0 1 2 3 4 5 6 7 8

FIG. 8. Flame with distributed heat loss. Variation of the unique burning


velocity with  K  for a final temperature equal to Oz.

Fig,ures 6 and 7 show the corresponding results for a typical case.
The previous conclusions are equally valid when the heat losses only

take place in the reaction zone as well as when they occur through all
the flame.
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(b)  O. = Oi.—When  the temperature of the burnt gases coincides Nsith

the ignition temperature, contrary to what occurs in the previous case,

it results that a single propagation velocity of the flame exists for each

value of the coefficient of heat loss. The value of this velocity is given by

the system

11

K ( 14

ii 1 0

4  ) F 2

4K
1/ 1 1(I 2

1

1-0 0

(23)

rt2L
2 [

u 1
/

(24)

.8


.7

K=0.5
.3

\

\iv
.1 9

K=0 5

o
.3 5 .6 .7 .8

FIG. 9. Flame with distributed heat loss. Variation of 0 with  e  for a final


temperature equal to  O.

Figures 8 and 9 show the corresponding results for this case. In them,

the dotted lines show, for comparison, the two solutions correspondinu

to the case  Of  — 0.
The preceding conclusions exist wholly, as can be verified easily,

when the diffusion effects are omitted as well as those of the influence of

concentration in the reaction rate, by assuming it constant, as has been

done in previous works already mentioned. Also, it can be proved that.

K=0 5
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in aeneral, when Of< 0,, two flame velocities exist, which reduce to only
one for Of

Moreover when the ignition temperature condition at the cold bound-
ary is substituted by the porous plug of Hirschfelder and distributed
heat losses are assumed with final temperature 00 equal to the temperature
of the plug, a single propagation velocity is obtained for each couple of
al ues of (5 and K.

The significance of these conclusions lies in the fact that a small var-
iation in the boundary conditions at the hot limit, since 0, can be chosen
arbitrarily close to 00, reduce the two propagation velocities to a single one.
Such conclusion reduces considerably the practical interest of the double
solution, specially when the influence of the activation energy is taken
into consideration. In fact, in such case, while the larger of the two veloc-
ities corresponding to each value of K for Of = 00 (actually the only
one that has been experimentally observed with complete certitude) is
independent of 0, as occurs in the adiabatic case, this does not happen
for the smaller velocity which must depend on the value assumed for
the ignition temperature and vanishes when the final temperature is equa
to O.

5. FLAME WITH LATERAL DIFFUSION

A possible cause of disturbance in the behavior of the flame with respect
to the ideal adiabatic solution considered in paragraph 2, which seems
not to have been analysed yet, lies in the lateral diffusion of active
chemical species w inch are substituted by the inert gases surrounding
the flame, giving place to a dilution of the mixture.

This problem can be studied in similar form to the previous cases of
heat losses, when the cooling term k(0----01) of the energy equation is
substituted by a term of lateral diffusion, whose action must be included
as NN, ell in the reaction equation. If it is assumed, as in the case of distri-
buted heat losses, that the local loss of active species by effect of the lateral
diffusion, per unit length and per unit time, is proportional to its con-
centration r(l — Y) where r is a constant coefficient, and if moreover,
it is assumed that the activation energy is zero, in which case the exact
solution of the problem can also be obtained, the equations of the flame
for this case are the following :

(a) Energy equation:

dO 1 0 10-- l -4- (I —00) (l — ,
	 (1— Y) (25)

o
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(b) Diffusion equation:
d Y

= L(Y—e) (26)

(c) Reaction equation:

1
(1 Y)

(t2ft
(27)

,3

2

_
1 8 7 6 5 3 2 1

FIG. 10. Flame with lateral diffusion. Variation of the burning velocity

with it for 0, = 0.

In the equations (25) and (27), It is a dimensionless measure of the effect
of lateral diffusion, defined by the expression

(28)

The elimination of (1— Y) between equations (25) and (27) allows the
substitution of the energy equation by the following:

dO
=  0-00—(1-00)i/cc  (29)

The boundary conditions that must satisfy this system are the same
as in the adiabatic case, except for the final temperature of the burnt
gases, which, evidently, must be smaller than the adiabatic one, since part
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of the reactant is lost by lateral diffusion without being burnt. Such tem-
perature  Oo is related with  p  by the expression

Of = 1— (1 —0°)(1—p)  (30)

The solution on the differential system leads to the following expression
for the flame velocity:

/ 2 )2 1-1/2

	

2 L
(I)' = /_ _I1 ' 1 (31)

I  itL 1 —On

\ Oi—uo

Consequently, it results that the lateral diffusion does not alter the
unicity of the solution corresponding to the adiabatic case, but reduces
the flame velocity when the diffusion increases. The velocity of the flame
vanishes for a value of the coefficient of lateral diffusion which is given
by the expression

01-0,

1-00
(32)

Figure 10 shows the variation of  9-  as a function of it for a typical case.
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APPENDIX

NOTATION

cr,=  specific heat at constant pressure.
D = diffusion coefficient.
E — activation energy of the chemical reaction.



464 GREGORIO MILLAN and IGNACIO DA RIN/A

k = heat-loss coefficient.

K   = dimensionless heat-loss coefficient.
CpWC°2

L 	
À

=  Lewis-Semenov number.
e DCp

7-7-' V = Constant = mass flow rate.
= heat transferred to the stabilizer.

91— local heat-loss.
r = coefficient of lateral diffussion.

R =  molar gas constant.
T =  temperature.

Tf= temperature of the burnt gases.
Tfa= temperature of the burnt gases for the adiabatic

flame.
v = velocity.
n = reaction rate per unit volume.

W = frequency factor of the chemical reaction.
x = coordinate normal to the combustion wave.
Y — mass fraction of combustion products.

dimensionless fraction of heat transferred to the
niCpT fa

stabilizer.

Y 	 . — dimensionless heat transferred to the stabilizer.
T101 AWCp

e = mass flow rate fraction of combustion products
— thermal conductivity.

o= density.

0 =_: 	 = dimensionless temperature.
/ fa

00 E — dimensionless activation energy.
RTfa

Tf
f  -7 = dimensionless temperature of combustion products.

Tfa

Oi = dimensionless ignition temperature.
0„ — dimensionless temperature of cold gases.

t 177 C p
SX =

A
dimensionless coordinate.

=1711 	  P  = dimensionless propagation velocity of the flame.
We-'0

,u — dimensionless coefficient of lateral diffusion.
W+r




